Значение водородного показателя отвечающие кислой среде

Значение водородного показателя отвечающие кислой среде

Водородный показатель (pH-фактор) — это мера активности ионов водорода в растворе, количественно выражающая его кислотность. Когда pH не на оптимальном уровне, растения начинают терять способность поглощать некоторые из необходимых для здорового роста элементы. Для всех растений есть специфический уровень pH который позволяет достичь максимальных результатов при выращивании. Большинство растений предпочитают слабокислую среду роста (между 5.5-6.5).

Водородный показатель в формулах

В очень разбавленных растворах водородный показатель эквивалентен концентрации ионов водорода. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр:

При стандартних условиях значение pH лежит в приделах от 0 до 14. В чистой воде, при нейтральном pH, концентрация H + равна концентрации OH — и составляет 1·10 -7 моль на литр. Максимально возможное значение pH определяется как сумма pH и pOH и равна 14.

Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида [OH — ] 10 моль/л pOH = −1.

Важно понимать! Шкала pH логарифмическая, что означает, что каждая единица изменения равняется десятикратному изменению концентрации ионов водорода. Другими словами, раствор с pH 6 в десять раз более кислый, чем раствор с pH 7, и раствор с pH 5 будет в десять раз более кислый, чем раствор с pH 6 и в сто раз более кислый, чем раствор с pH 7. Это означает, что когда вы регулируете pH вашего питательного раствора, и вам необходимо изменить pH на два пункта (например с 7.5 до 5.5) вы должны использовать в десять раз больше корректора pH, чем если бы изменяли pH только на один пункт (с 7.5 до 6.5).

Методы определения значения pH

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

Кислотно-основные индикаторы

Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы.

Универсальный индикатор

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислотной области в основную.

Растворами таких смесей — «универсальных индикаторов» обычно пропитывают полоски «индикаторной бумаги», с помощью которых можно быстро (с точностью до единиц рН, или даже десятых долей рН) определить кислотность исследуемых водных растворов. Для более точного определения полученный при нанесении капли раствора цвет индикаторной бумаги немедленно сравнивают с эталонной цветовой шкалой, вид которой представлен на изображениях.

Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.

Учитывая тот факт, что оптимальные значения pH для питательных растворов в гидропонике имеют весьма узкий интервал (обычно от 5.5 до 6.5) использую и другие комбинации индикаторов. Так, например, наш жидкий pH тест имеет рабочий диапазон и шкалу от 4.0 до 8.0, что делает такой тест более точным в сравнении с универсальной индикаторной бумагой.

pH-метр

Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью универсальных индикаторов. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН. Позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

Для более подробного изучения темы рекомендуем посетить соответствующий раздел форума: «pH-метры».

Аналитический объёмный метод

Аналитический объёмный метод — кислотно-основное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.

Влияние температуры на значения pH

Значение pH может меняться в широком диапазоне при изменение температуры. Так, 0,001 молярный раствор NaOH при 20°C имеет pH=11,73, а при 30°C pH=10,83. Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H + ) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Регулирование pH питательного раствора

Подкисление питательного раствора

Питательный раствор обычно приходится подкислять. Поглощение ионов растениями вызывает постепенное подщелачивание раствора. Любой раствор, имеющий pH 7 или выше, чаще всего приходится доводить до оптимального pH. Для подкисления питательного раствора можно использовать различные кислоты. Чаще всего применяют серную или фосфорную кислоты. Более верным решением для гидропонных растворов являются буферные добавки, такие как pH minus Bloom и pH minus Grow. Данные средства не только доводят значения pH до оптимального, но и стабилизируют значения на длительный период.

При регулировании pH как кислотами, так и щелочами нужно надевать резиновые перчатки, чтобы не вызвать ожогов кожи. Опытный химик умело обращается с концентрированной серной кислотой, он по каплям добавляет кислоту к воде. Но начинающим гидропонистам, пожалуй, лучше обратиться к опытному химику и попросить его приготовить 25%-ный раствор серной кислоты. Во время добавления кислоты раствор перемешивают и определяют его pH. Узнав примерное количество серной кислоты, в дальнейшем ее можно добавлять из мерного цилиндра.

Серную кислоту нужно прибавлять небольшими порциями, чтобы не слишком сильно подкислить раствор, который тогда придется опять подщелачивать. У неопытного работника подкисление и подщелачивание могут продолжаться до бесконечности. Помимо напрасной траты времени и реактивов, такое регулирование выводит из равновесия питательный раствор вследствие накопления ненужных растениям ионов.

Подщелачивание питательного раствора

Слишком кислые растворы подщелачивают едким натрием (гидроксид натрия). Как следует из его названия — это едкое вещество, поэтому нужно пользоваться резиновыми перчатками. Рекомендуется приобретать едкий натрий в виде пилюль. В магазинах бытовой химии едкий натрий можно приобрести как средство для очистки труб, например "Крот". Растворяют одну пилюлю в 0,5 л воды и постепенно приливают щелочной раствор к питательному раствору при постоянном помешивании, часто проверяя его pH. Никакими математическими расчетами не удается вычислить, сколько кислоты или щелочи нужно добавить в том или ином случае.

Если в одном поддоне хотят выращивать несколько культур, нужно подбирать их так, чтобы совпадал не только их оптимальный pH, но и потребности в других факторах роста. Например, желтым нарциссам и хризантемам нужен pH 6,8, но различный режим влажности, поэтому их невозможно выращивать на одном и том же поддоне. Если давать нарциссам столько же влаги, сколько хризантемам, луковицы нарциссов загниют. В опытах ревень достигал максимального развития при pH 6,5, но мог расти даже при pH 3,5. Овес, предпочитающий pH около 6, дает хорошие урожаи и при pH 4, если сильно увеличить дозу азота в питательном растворе. Картофель растет при довольно широком интервале pH, но лучше всего он развивается при pH 5,5. Ниже этого pH также получают высокие урожаи клубней, но они приобретают кислый вкус. Чтобы получать максимальные урожаи высокого качества, нужно точно регулировать pH питательных растворов.

Читайте также:  Варенье с водой как называется

ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ (РН). Одно из важнейших свойств водных растворов – их кислотность (или щелочность), которая определяется концентрацией ионов Н + и ОН – (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ). Концентрации этих ионов в водных растворах связаны простой зависимостью [H + ][OH – ] = Кw; (квадратными скобками принято обозначать концентрацию в единицах моль/л). Величина Kw называется ионным произведением воды и при данной температуре постоянна. Так, при 0 о С она равна 0,11 Ч 10 –14 , при 20 о С – 0,69 Ч 10 –14 , а при 100 о С – 55,0 Ч 10 –14 . Чаще всего пользуются значением Kw при 25 о С, которое равно 1,00 Ч 10 –14 . В абсолютно чистой воде, не содержащей даже растворенных газов, концентрации ионов Н + и ОН – равны (раствор нейтрален). В других случаях эти концентрации не совпадают: в кислых растворах преобладают ионы Н + , в щелочных – ионы ОН – . Но их произведение в любых водных растворах постоянно. Поэтому если увеличить концентрацию одного из этих ионов, то концентрация другого иона уменьшится во столько же раз. Так, в слабом растворе кислоты, в котором [H + ] = 10 –5 моль/л, [OH – ] = 10 –9 моль/л, а их произведение по-прежнему равно 10 –14 . Аналогично в щелочном растворе при [OH – ] = 3,7 Ч 10 –3 моль/л [H + ] = 10 –14 /3,7 Ч 10 –3 = 2,7 Ч 10 –11 моль/л.

Из сказанного следует, что можно однозначно выразить кислотность раствора, указав концентрацию в нем только ионов водорода. Например, в чистой воде [H + ] = 10 –7 моль/л. На практике оперировать такими числами неудобно. Кроме того, концентрации ионов Н + в растворах могут отличаться в сотни триллионов раз – примерно от 10 –15 моль/л (крепкие растворы щелочей) до 10 моль/л (концентрированная соляная кислота), что невозможно изобразить ни на каком графике. Поэтому давно договорились для концентрации ионов водорода в растворе указывать только показатель степени 10, взятый с обратным знаком; для этого концентрацию следует выразить в виде степени 10х, без множителя, например, 3,7 Ч 10 –3 = 10 –2,43 . (При более точных расчетах, особенно в концентрированных растворах, вместо концентрации ионов используют их активности.) Этот показатель степени получил название водородного показателя, а сокращенно рН – от обозначения водорода и немецкого слова Potenz – математическая степень. Таким образом, по определению, рН = –lg[Н + ]; эта величина может изменяться в небольших пределах – всего от –1 до 15 (а чаще – от 0 до 14). При этом изменению концентрации ионов Н + в 10 раз соответствует изменение рН на одну единицу. Обозначение рН ввел в научный обиход в 1909 датский физикохимик и биохимик С.П.Л.Сёренсен, который занимался в то время изучением процессов, происходящих при сбраживании пивного солода, и их зависимостью от кислотности среды.

При комнатной температуре в нейтральных растворах рН = 7, в кислых растворах рН 7. Приблизительно значение рН водного раствора можно определить с помощью индикаторов. Например, метиловый оранжевый при рН 4,4 – желтый; лакмус при рН 8 – синий и т.д. Более точно (до сотых долей) значение рН можно определить с помощью специальных приборов – рН-метров. Такие приборы измеряют электрический потенциал специального электрода, погруженного в раствор; этот потенциал зависит от концентрации ионов водорода в растворе, и его можно измерить с высокой точностью.

Интересно сравнить значения рН растворов различных кислот, оснований, солей (при концентрации 0,1 моль/л), а также некоторых смесей и природных объектов. Для малорастворимых соединений, отмеченных звездочкой, приведены рН насыщенных растворов.

Таблица 1. Водородные показатели для растворов

Раствор РН HCl 1,0 H2SO4 1,2 H2C2O4 1,3 NaHSO4 1,4 Н3РО4 1,5 Желудочный сок 1,6 Винная кислота 2,0 Лимонная кислота 2,1 HNO2 2,2 Лимонный сок 2,3 Молочная кислота 2,4 Салициловая кислота 2,4 Столовый уксус 3,0 Сок грейпфрута 3,2 СО2 3,7 Яблочный сок 3,8 H2S 4,1 Моча 4,8–7,5 Черный кофе 5,0 Слюна 7,4–8 Молоко 6,7 Кровь 7,35–7,45 Желчь 7,8–8,6 Вода океанов 7,9–8,4 Fe(OH)2 9,5 MgO 10,0 Mg(OH)2 10,5 Na2CO3 11 Ca(OH)2 11,5 NaOH 13,0

Таблица позволяет сделать ряд интересных наблюдений. Значения рН, например, сразу показывают сравнительную силу кислот и оснований. Хорошо видно также сильное изменение нейтральной среды в результате гидролиза солей, образованных слабыми кислотами и основаниями, а также при диссоциации кислых солей.

Природная вода всегда имеет кислую реакцию (рН « Н + + НСО3 2– . Если насытить воду углекислым газом при атмосферном давлении, рН полученной «газировки» будет равен 3,7; такую кислотность имеет примерно 0,0007%-ный раствор соляной кислоты – желудочный сок намного кислее! Но даже если повысить давление CO2 над раствором до 20 атм, значение pH не опускается ниже 3,3. Это значит, что газированную воду (в умеренных количествах, конечно) можно пить без вреда для здоровья, даже если она насыщена углекислым газом.

Определенные значения рН имеют исключительно большое значение для жизнедеятельности живых организмов. Биохимические процессы в них должны протекать при строго заданной кислотности. Биологические катализаторы – ферменты способны работать только в определенных пределах рН, а при выходе за эти пределы их активность может резко снижаться. Например, активность фермента пепсина, который катализирует гидролиз белков и способствует таким образом перевариванию белковой пищи в желудке, максимальна при значениях рН около 2. Поэтому для нормального пищеварения необходимо, чтобы желудочный сок имел довольно низкие значения рН: в норме 1,53–1,67. При язвенной болезни желудка рН понижается в среднем до 1,48, а при язве двенадцатиперстной кишки может доходить даже до 105. Точное значение рН желудочного сока определяют путем внутрижелудочного исследования (рН-зонд). Если у человека понижена кислотность, врач может назначить прием с пищей слабого раствора соляной кислоты, а при повышенной кислотности – принимать противокислотные средства, например, гидроксиды магния или алюминия. Интересно, что если выпить лимонный сок, кислотность желудочного сока. понизится! Действительно, раствор лимонной кислоты лишь разбавит более сильную соляную кислоту, содержащуюся в желудочном соке.

Читайте также:  Декупаж мебели творческие идеи для вашего дома

В клетках организма рН имеет значение около 7, во внеклеточной жидкости – 7,4. Нервные окончания, которые находятся вне клеток, очень чувствительны к изменению рН. При механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. В результате человек чувствует боль. Скандинавский исследователь Олаф Линдал проделал такой эксперимент: с помощью специального безыгольного инъектора человеку впрыскивали сквозь кожу очень тонкую струйку раствора, которая не повреждала клетки, но действовала на нервные окончания. Было показано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается. Аналогично непосредственно «действует на нервы» и раствор муравьиной кислоты, который жалящие насекомые или крапива впрыскивают под кожу. Разным значением рН тканей объясняется также, почему при некоторых воспалениях человек чувствует боль, а при некоторых – нет.

Интересно, что впрыскивание под кожу чистой воды дало особенно сильную боль. Объясняется это странное на первый взгляд явление так: клетки при контакте с чистой водой в результате осмотического давления разрываются и их содержимое воздействует на нервные окончания.

В очень узких пределах должно оставаться значение рН крови; даже небольшое ее подкисление (ацидоз) или защелачивание (алкалоз) может привести к гибели организма. Ацидоз наблюдается при таких заболеваниях как бронхит, недостаточность кровообращения, опухоли легких, пневмония, диабет, лихорадка, поражения почек и кишечника. Алколоз же наблюдается при гипервентиляции легких (или при вдыхании чистого кислорода), при анемии, отравлении СО, истерии, опухоли мозга, избыточном потреблении питьевой соды или щелочных минеральных вод, приеме диуретических лекарств. Интересно, что рН артериальной крови в норме должно быть в пределах 7,37–7,45, а венозной – 7,34–7,43. Различные микроорганизмы также весьма чувствительны к кислотности среды. Так, патогенные микробы быстро развиваются в слабощелочной среде, тогда как кислую среду они не выдерживают. Поэтому для консервирования (маринование, соление) продуктов используют, как правило, кислые растворы, добавляя в них уксус или пищевые кислоты. Большое значение имеет правильный подбор рН и для химико-технологических процессов.

Поддержать нужное значение рН, не дать ему заметно отклониться в ту или другую сторону при изменении условий возможно при использовании так называемых буферных (от англ. buff – смягчать толчки) растворов. Такие растворы часто представляют собой смесь слабой кислоты и ее соли или слабого основания и его соли. Подобные растворы «сопротивляются» в определенных пределах (которые называются емкостью буфера) попыткам изменить их рН. Например, если попытаться немного подкислить смесь уксусной кислоты и ацетата натрия, то ацетат-ионы свяжут избыточные ионы Н + в малодиссоциированную уксусную кислоту, и рН раствора почти не изменится (ацетат-ионов в буферном растворе много, так как они образуются в результате полной диссоциации ацетата натрия). С другой стороны, если ввести в такой раствор немного щелочи, избыток ионов ОН – будет нейтрализован уксусной кислотой с сохранением значения рН. Аналогичным образом действуют и другие буферные растворы, причем каждый из них поддерживает определенное значение рН. Буферным действием обладают также растворы кислых солей фосфорной кислоты и слабых органических кислот – щавелевой, винной, лимонной, фталевой и др. Конкретное значение рН буферного раствора зависит от концентрации компонентов буфера. Так, ацетатный буфер позволяет поддерживать рН раствора в интервале 3,8–6,3; фосфатный (смесь КН2РО4 и Na2HPO4) – в интервале 4,8 – 7,0, боратный (смесь Na2B4O7 и NaOH) – в интервале 9,2–11 и т.д.

Многие природные жидкости обладают буферными свойствами. Примером может служить вода в океане, буферные свойства которой во многом обусловлены растворенным углекислым газом и гидрокарбонат-ионами НСО3 – . Источником последних, помимо СО2, являются огромные количества карбоната кальция в виде раковин, меловых и известняковых отложений в океане. Интересно, что фотосинтетическая деятельность планктона – одного из основных поставщиков кислорода в атмосферу, приводит к повышению рН среды. Происходит это в соответствии с принципом Ле Шателье в результате смещения равновесия при поглощении растворенного углекислого газа: 2Н + + СО3 2– « Н + + НСО3 – « Н2СО3 « Н2О + СО2. Когда в ходе фотосинтеза CO2 + H2O + hv ® 1/n(CH2O)n + O2 из раствора удаляется СО2, равновесие смещается вправо и среда становится более щелочной. В клетках организма гидратация СО2 катализируется ферментом карбоангидразой.

Клеточная жидкость, кровь также являются примерами природных буферных растворов. Так, кровь содержит около 0,025 моль/л углекислого газа, причем его содержание у мужчин примерно на 5% выше, чем у женщин. Примерно такая же в крови концентрация гидрокарбонат-ионов (их тоже больше у мужчин).

При исследовании почвы рН является одной из наиболее важных характеристик. Разные почвы могут иметь рН от 4,5 до 10. По значению рН, в частности, можно судить о содержании в почве питательных веществ, а также о том, какие растения могут успешно расти на данной почве. Например, рост фасоли, салата, черной смородины затрудняется при рН почвы ниже 6,0; капусты – ниже 5,4; яблони – ниже 5,0; картофеля – ниже 4,9. Кислые почвы обычно менее богаты питательными веществами, поскольку хуже удерживают в себе катионы металлов, необходимые растениям. Например, попавшие в почву ионы водорода вытесняют из нее связанные ионы Са 2+ . А вытесненные из глинистых (алюмосиликатных) пород ионы алюминия в больших концентрациях токсичны для сельскохозяйственных культур.

Для раскисления кислых почв используют их известкование – внесение веществ, постепенно связывающих избыток кислоты. Таким веществом могут служить природные минералы – мел, известняк, доломит, а также известь, шлак с металлургических заводов. Количество внесенного раскислителя зависит от буферной емкости почвы. Например, для известкования глинистой почвы требуется больше раскисляющих веществ, чем для песчаной.

Большое значение имеют измерения рН дождевой воды, которая может оказаться довольно кислой из-за присутствия в ней серной и азотной кислот. Эти кислоты образуются в атмосфере из оксидов азота и серы (IV), которые выбрасываются с отходами многочисленных производств, транспорта, котельных и ТЭЦ. Известно, что кислотные дожди с низким значением рН (менее 5,6) губят растительность, живой мир водоемов. Поэтому постоянно ведется контроль рН дождевой воды.

Водоро́дный показа́тель, pH (лат. pondus Hydrogenii [1] — «вес водорода»; произносится «пэ-аш») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, количественно выражающая его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр:

pH = − lg ⁡ [ H + ] <displaystyle <mbox>=-lg left[<mbox>^<+>
ight]>

Содержание

История [ править | править код ]

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni — сила водорода, или pondus hydrogeni — вес водорода. Вообще в химии сочетанием pX принято обозначать величину, равную −lg X . Например, силу кислот часто выражают в виде pKa = −lg Ka .

В случае pH, буква H обозначает концентрацию ионов водорода (H + ), или, точнее, термодинамическую активность гидроксоний-ионов.

Читайте также:  Выращивание картофеля из семян в домашних условиях

Уравнения, связывающие pH и pOH [ править | править код ]

Вывод значения pH [ править | править код ]

В чистой воде концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) одинаковы и при 22 °C составляют по 10 −7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H + ] · [OH − ] и составляет 10 −14 моль²/л² (при 25 °C).

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается (на самом деле увеличивается не концентрация собственно ионов — иначе как способность кислот «присоединять» ион водорода могла бы приводить к этому — а концентрация именно таких соединений с «присоединённым» к кислоте ионом водорода), а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H + ] > [OH − ], говорят, что раствор является кислотным, а при [OH − ] > [H + ] — осно́вным.

Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентрации ионов водорода используют её взятый с обратным знаком десятичный логарифм, который, собственно, и является водородным показателем — pH.

pH = − lg ⁡ [ H + ] <displaystyle < ext>=-lg left[<mbox>^<+>
ight]>

pOH [ править | править код ]

Несколько меньшее распространение получила обратная pH величина — показатель осно́вности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH − :

как в любом водном растворе при 25 °C [ H + ] [ OH − ] = 1 , 0 ⋅ 10 − 14 <displaystyle [< ext>^<+>][< ext>^<->]=1<,>0cdot 10^<-14>> , очевидно, что при этой температуре:

pOH = 14 − pH <displaystyle < ext>=14-< ext>>

Значения pH в растворах различной кислотности [ править | править код ]

Некоторые значения pH [ источник не указан 1468 дней ]

Вещество pH Цвет индикатора
Геотермальная вода у вулкана Даллол ≈ 0
Электролит в свинцовых аккумуляторах [2]
Чистая вода при 25 °C 7,0
Кровь 7,36–7,44
Морская вода 8,0
Мыло (жировое) для рук 9,0–10,0
Нашатырный спирт 11,5
Отбеливатель (хлорная известь) 12,5
Концентрированные растворы щелочей >13

Так как при 25 °C (стандартных условиях) [H + ] · [OH − ] = 10 −14 , то понятно, что при этой температуре pH + pOH = 14.

Так как в кислотных растворах [H + ] > 10 −7 , то у кислотных растворов pH 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH + , так и OH − ); при понижении температуры, напротив, нейтральная pH возрастает.

Методы определения значения pH [ править | править код ]

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-осно́вного титрования.

  1. Для грубой оценки концентрации водородных ионов широко используются кислотно-осно́вные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в осно́вной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы.
  2. Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислотной области в осно́вную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.
  3. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H + в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.
  4. Аналитический объёмный метод — кислотно-осно́вное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.
  5. Влияние температуры на значения pH

0,001 моль/л HCl при 20 °C имеет pH=3, при 30 °C pH=3 [ источник не указан 1290 дней ]

0,001 моль/л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83 [ источник не указан 1290 дней ]

Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H + ) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии [ править | править код ]

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-осно́вных свойств различных биологических сред.

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-осно́вного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.

В человеческом организме в различных органах водородный показатель различен. Нормальный рН крови составляет 7,36, то есть кровь имеет слабоосновную реакцию (с колебаниями от 7,34 у венозной крови до 7,40 у артериальной). В зависимости от биохимических изменений в крови может наблюдаться ацидоз (увеличение кислотности) или алкалоз (увеличение осно́вности), однако совместимый с жизнью диапазон pH крови невелик, поскольку уже при уменьшении pH до 6,95 наступает потеря сознания, а смещение реакции крови в щелочную сторону до pH = 7,7 вызывает тяжелейшие судороги. Поддержание кислотно-основного баланса крови в допустимых пределах осуществляется буферными системами крови, главной из которых является гемоглобиновая [3] . Нормальный водородный показатель желудочного сока (в просвете тела желудка натощак) равен 1,5…2,0 [4] . У сока тонкой кишки pH в норме составляет 7,2…7,5, при усилении секреции достигает 8,6. У сока толстой кишки в норме pH равен 8,5…9,0 [5] .

Ссылка на основную публикацию
Засолка помидоров в бочке на зиму холодным
Дачники часто сталкиваются с трудностями хранения собранного урожая. Не все плоды долгое время остаются свежими, поэтому их солят и маринуют....
Жюльен пошаговый рецепт с фото
Во французском понимании жульен — это способ нарезки и приготовления блюд из свежих овощей, созревающих в июле. Отсюда и название...
За обильное цветение ценятся герани семена которых
Задание 18. Расставьте все знаки препинания: укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые). За обильное цветение (1)...
Засолка рядовок холодным способом видео
Грибы рядовки встречаются в лесных массивах по всей территории России. Пик сбора приходится на август и сентябрь месяцы. По «плодовитости»...
Adblock detector